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Abstract

”While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.” [3]

1 Summary

ViTs were released as an alternative to convolutional neural networks (CNNs) by utilizing the fun-
damental concepts of transformers that have made them so successful in NLP settings to the task
of vision. By reshaping the transformer model to handle 2D image patches, the authors of this
paper develop a model which can leverage the strong efficiencies and capabilities of transformers.
They find their architecture improves as model size and data size increases demonstrating that scale
outperforms the inductive biases and equivariance of CNN architectures.

2 Introduction

Transformer based architectures have become the default choice for natural language processing.
Vision modeling has been predominantly handled by CNNs. Inspired by the recent success of
transformer architectures in NLP settings, the authors experiment with applications of modified
transformers to the vision setting. They call this approach. ViTs work by splitting an image into
multiple patches and treating each patch as a token exactly as seen in the NLP setting. They go on
to demonstrate that ViTs are particularly efficient and good at significant scales. When trained on
small datasets, ViTs under perform CNNs due to their lack of translation equivalence and locality;
However, when scaled to larger datasets, ViTs significantly outperform models of comparable sizes
across nearly every task. The simple take away is that transformer scaling capabilities outweigh the
inductive bias of CNNs.



3 Background and Motivation

Transformers were designed as in context learning algorithms handling queries, keys, and values.
It has since been adapted to the NLP setting. Direct application on a pixel-per-token equivalence
would fail as input sizes scale and induce significant costs. Prior transformer vision approaches
have approximated the locality of pixels similar to CNNs [7], but these have failed particularly
when needing to handle global components. Instead, by utilize patches, as was also done in prior
work to a lesser extent [2], the authors of this paper demonstrate the scalability of this patching
approach to larger models and larger datasets. By applying this transformer approach to vision they
demonstrate significant improvements over CNNs at scale.

3.1 Key Concepts
• Concept 1: In ViT, the equivalent tokens of NLP models are described as patches. Patches

are two dimensional arrays which require simple modifications in the transformer architec-
ture to enable training. Namely, reshaping the token process from x ∈ RH×W×C into a
sequence of flattened 2D patches xp ∈ RN×(P 2·C), where (H,W ) is the resolution of the
original image, C is the number of channels, (P, P ) is the resolution of each image patch,
and N = HW

P 2 is the number of patches.
• Concept 2: ViTs work particularly well as data and model architecture is scaled to larger

datasets. This is where the offer the most performance gains, both in memory efficiency, in-
ference costs, and accuracy. Excluding the final MLP layers, ViTs lack of strong inductive
bias or equivariance, but significantly outperform CNNs.

• Concept 3: The ViT architecture is simple, scalable, and efficient.

4 Methodology

To make this work, the authors reshape the token concept from the standard transformer to handle
image 2D image patches rather than the traditional 1D token. Through reshaping the transformer
outputs a projection as a patch embedding. This learnable embedding serves as the image repre-
sentation that gets a classification head attached to each patch. This classification head is single
hidden layer MLP for pre-training, and a single linear layer during fine-tuning. Finally, positional
embeddings are introduced which provide a weak inductive bias and ultimately get sent as input to
the transformer encoder. They also propose a hybrid model which replaces raw patches with feature
maps from CNNs.

Figure 1: ViT Model Architecture. Splitting images into fixed patches, linearly embedding each
patch, positional embedding, and adding a classification token to each patch to turn this into a
classification task.

4.1 Overview of the Proposed Approach
• Issue 1: As described in depth, the transformer architecture handles 1D inputs and must

be reshaped for 2D image patches. Extracting these patches are the only points where the
model has access about the 2D image structure.

2



• Issue 2: This approach can handle arbitrarily long sequences with the consequence that
position embeddings are no longer valuable. To counteract this, they interpolate the 2D
interpolations according to their respective location in the given image.

5 Experiments and Results

In order to evaluate ViT, they compare the learning capabilities to ResNet and their hybrid model.
They train on various datasets and evaluate their models on benchmark tasks like VTAB for classi-
fication. More specifically, they train on the ILSVRC-2012 ImageNet dataset which is comprised
of 1k classes and 1.3M training images, ImageNet-21k with 21k classes, and 14M images, and JFT
with 18k classes and 202M images. Their ResNet model is upgraded to utilize group normalization
and standard convolutions to improve information transfer in order to provide a more fair compari-
son with ViT. This is because ViT skip connections are more powerful than those used in standard
CNNs. They test their models on downstream datasets with few-shot or fine-tuned accuracies to
capture the performance of each model. Through their experiments they demonstrate ViT signifi-
cantly outperforms CNNs across every task and only improves as data is scaled. Notably, they train
their models on TPUv3 for 30 days.

Figure 2: ViT comparison across a range of classification tasks.

5.1 Evaluation Metrics
• Metric 1: Models are evaluated utilizing a handful of benchmark tasks. ImageNet, ReaL

labels [1], CIFAR-10/100 [4], Oxford-IIIT Pets [6], Oxford Flowers-102 [5], and the 19-
task VTAB classification suite [8]. ”The tasks are divided into three groups: Natural –
tasks like the above, Pets, CIFAR, etc. Specialized – medical and satellite imagery, and
Structured – tasks that require geometric understanding like localization.” [3]

• Metric 2: Multiple ViT models are designed consisting of Base, Larger, and Huge. These
not only define the model size, but the input patch size where Large defines a 16 × 16
image patch for the tokens. Each model is tested on its downstream performance on few-
shot or fine-tuning accuracy’s formulated as a least-squares regression problem allowing
for a closed form solution.

5.2 Key Results
• Result 1: Figure 2 illustrates the results of of their ViT models across a range of tasks.

Outperforming ResNet and EfficientNet on every metric but a significant margin while
taking significantly less computational resources to pre-train.

• Result 2: To explore pret-raining results, they test various data sizes with optimized hyper
parameters and find that ViT outperforms its CNN counterparts only when the data size and
model architecture is substantially large. When datasets and model architecture are small,
ViTs overfit more than ResNets of comparable computational costs.

• Result 3: Models are pre-trained for 7 − 14 epochs which result in ViTs outperforming
ResNets on performance/compute trade-offs by using 2×−4× less compute to achieve the
same performance costs.

• Result 4: They find the internal representations of their positional embeddings encodes
distance within the image patches. The attention mechanism also encodes global informa-
tion within the early layers. Particularly, some attention heads become tuned to the task
of global information while the other attention heads become tuned for localized attention.
As model depth increases these attention distances increase.
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6 Discussion and Critique

Despite the exceptional performance of ViTs over CNNs, their widespread adoption has been slow.
This is likely due in part to the additional architectural complexity, and extensive datasets required
for pre-training. CNNs are inherently efficient at capturing spatial hierarchies through their localized
operations and transnational equivariance, properties which are baked into their design. ViTs, on the
other hand, do not utilize inductive biases, relying instead on global self-attention mechanisms to
overcome this difference. Furthermore, ViTs’ reliance on a large-scale dataset during pre-training
to outperform CNNs.

Additionally, the slow adoption of ViTs may also lie in the computational inefficiencies associated
with their quadratic scaling in self-attention as the input size increases. Although ViTs eliminate
the need for convolutions, their attention mechanism, which requires every patch to attend to every
other patch, introduces scaling challenges, especially in high-resolution images.

6.1 Strengths

• Strength 1: ViTs scale significantly better as we increase model size and data set size.
This results in better performance and accuracy over CNNs at the cost of minor increases
in model complexity.

• Strength 2: ViTs are computationally efficient due to their transformer architecture im-
proving both inferencing and energy costs over the long term.

• Strength 3: ViTs also handle small images patches well, by learning strong relative dis-
tance encodings between patches which leads to strong internal representations of global
and localized patches.

6.2 Weaknesses

• Weakness 1: While ViTs show promise in benchmark settings, they require significant
data resources for both training and fine-tuning.

• Weakness 2: ViTs lack the inductive biases present in CNNs, such as translation equiv-
ariance, which makes them less efficient at handling smaller datasets or tasks requiring
strong spatial hierarchies. This limitation reduces their generalization capability in certain
domains without extensive pre-training.

7 Future Directions

• Future work should explore introducing equivariance and stronger inductive bias into ViTs
to improve their generalization capabilities on smaller datasets.

• Another direction of future work would be to explore strong model architecture decisions
such as improved transformers or positional embeddings techniques.

8 Conclusion

Vits have emerged as a powerful alternative to CNNs at when done at scale. By leveraging the trans-
former, ViTs can capture long-range image dependencies for global and local information. Despite
their impressive capabilities, strong performance at scale, and significantly reduced computational
resources needed ViTs have not seen widespread adoption due to the necessary overhead to lever-
age their scaling capabilities. While they are likely the model of choice for scalable architectures,
CNNs remain the strongest model architecture for their internal design choices leading to strong
performance on small scale data and applications.
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